EL ABC DE LA GESTIÓN DE DATOS
1. Integración de datos
Las organizaciones a menudo tienen datos dispersos en múltiples sistemas. La integración de datos implica la combinación de datos de diferentes fuentes para obtener una visión completa y coherente.
2. Modelado de datos
Los modelos de datos son diagramas simples de sus sistemas y los datos que contienen esos sistemas. El modelado de datos facilita a los equipos ver cómo fluyen los datos a través de sus sistemas y procesos empresariales.
Estos son algunos ejemplos de información que un modelo de datos podría incluir:
-
- Datos del producto
- Información del socio
- Datos del cliente
3. Almacenamiento de datos
El almacenamiento de datos es la práctica de registrar y preservar datos para el futuro, esto sirve para recabar los datos a lo largo del tiempo. Una vez clasificados ordenadamente, es posible acceder a la información que necesites de forma inmediata y sencilla. En los negocios se usa para realizar consultas que faciliten encontrar soluciones, tomar decisiones y crear estrategias.
Una de sus funciones más importantes es permitir a los negocios generar y recabar bases de contactos, como:
-
- Información de clientes para analizar sus tendencias de compra
- Reportes de ventas
- Descripciones de productos y servicios
- Estructura de recursos humanos
4. Catálogo de datos
Un catálogo de datos es un inventario detallado de todos los activos de datos de una organización, diseñado para ayudar a los profesionales de datos a encontrar rápidamente los datos más apropiados para cualquier propósito comercial o analítico.
Un catálogo de datos utiliza metadatos, datos que describen o resumen datos, para crear un inventario informativo y de búsqueda de todos los activos de datos en una organización. Estos activos pueden incluir:
-
- Datos estructurados
- Datos no estructurados, incluidos documentos, páginas web, e-mail, contenido de redes sociales, datos móviles, imágenes, audio y video
- Informes y resultados de consultas
- Visualizaciones de datos y paneles de control
- Conexiones entre bases de datos
5. Procesamiento de datos
El procesamiento de datos se refiere al conjunto de acciones y transformaciones que se realizan en datos para convertirlos de su estado original en información útil, significativa y procesable. Esto implica la recopilación, organización, análisis, manipulación y presentación de datos de una manera que permita a las personas, sistemas o aplicaciones tomar decisiones informadas o realizar tareas específicas.
6. La gobernanza de datos
La gobernanza de datos, también conocida como gobierno de datos, es un conjunto de prácticas, políticas, procedimientos y procesos que se utilizan para gestionar y controlar los datos en una organización. El objetivo principal de la gobernanza de datos es garantizar que los datos sean confiables, precisos, seguros y estén disponibles para las personas y sistemas adecuados cuando sea necesario. La gobernanza de datos es esencial para garantizar la calidad de los datos y para cumplir con regulaciones y estándares de privacidad de datos.
7. Gestión del ciclo de vida de los datos (Data Lifecycle Management – DLM)
El DLM se refiere a un enfoque estratégico y práctico para gestionar datos a lo largo de todo su ciclo de vida, desde su creación hasta su eliminación o archivo final.
El ciclo de vida de los datos comprende varias etapas, que pueden variar según la organización y el tipo de datos, pero generalmente incluyen:
a. Creación: Los datos se crean inicialmente como resultado de una actividad o proceso, como la captura de información de clientes, la generación de registros de transacciones, la recopilación de datos de sensores, etc.
b. Almacenamiento: Los datos se almacenan en sistemas de almacenamiento, ya sea en servidores locales, en la nube o en dispositivos físicos.
c. Acceso y Uso: Los datos se utilizan para diversas actividades, como análisis, informes, toma de decisiones, aplicaciones en tiempo real, entre otros.
d. Mantenimiento y Actualización: Los datos pueden requerir mantenimiento periódico para garantizar su precisión y calidad. Esto puede incluir la actualización de registros, la limpieza de datos duplicados y la corrección de errores.
e. Retención: Los datos deben conservarse durante un período específico para cumplir con regulaciones legales o fines comerciales. Esto puede variar según el tipo de datos y la industria.
f. Archivado: Después de su período de retención, los datos pueden archivarse para su conservación a largo plazo, generalmente en sistemas de almacenamiento de menor costo y acceso más lento.
g. Eliminación Segura: Cuando los datos ya no son necesarios, deben eliminarse de manera segura para proteger la privacidad y la seguridad de la información.
8. Tubería de datos (Data Pipeline – ETL)
Data Pipeline (también conocido como tubería de datos) es un conjunto de procesos y tecnologías que permiten la extracción, transformación y carga (ETL, por sus siglas en inglés) de datos desde múltiples fuentes de datos a un destino final, como una base de datos, un almacén de datos o un sistema de análisis. Estas tuberías se utilizan para mover datos de un lugar a otro de manera eficiente y confiable, y a menudo forman parte fundamental de la infraestructura de datos en las organizaciones.
Aquí hay una descripción de las tres fases principales de un Data Pipeline:
-
- Extracción (Extract): En esta fase, los datos se recopilan de diversas fuentes, que pueden incluir bases de datos, sistemas de archivos, aplicaciones en la nube, servicios web, sensores, registros de eventos y más. La extracción implica obtener datos crudos de estas fuentes de manera eficiente y generalmente implica el uso de conectores y adaptadores específicos para cada fuente de datos.
-
- Transformación (Transform): Después de extraer los datos, es común que necesiten ser transformados y limpiados antes de que puedan ser utilizados para análisis o informes. La transformación de datos puede incluir la conversión de formatos, la corrección de errores, la agregación, la normalización y otros procesos para garantizar la calidad y la coherencia de los datos.
-
- Carga (Load): Una vez que los datos han sido extraídos y transformados, se cargan en un destino final, como una base de datos, un almacén de datos o un sistema de análisis. La carga se realiza de manera que los datos estén disponibles y listos para su consulta y análisis por parte de los usuarios finales.
9. Seguridad de datos
La seguridad de datos, también conocida como ciberseguridad o seguridad de la información, se refiere a las prácticas, medidas y tecnologías diseñadas para proteger los datos y la información de una organización contra amenazas, ataques y accesos no autorizados. La seguridad de datos es fundamental en la actualidad debido a la creciente cantidad de datos digitales almacenados y compartidos en sistemas informáticos y redes.
Aspectos importantes de la seguridad de los datos.
-
- Confidencialidad
- Integridad
- Disponibilidad
- Autenticación y Autorización
- Cifrado
- Gestión de Vulnerabilidades
- Monitorización y Detección de Amenazas
10. Arquitectura de datos
La arquitectura de datos se refiere a la estructura y diseño de cómo una organización almacena, organiza, procesa y gestiona sus datos. Es un componente esencial de la gestión de datos en una empresa o entidad, y su objetivo principal es asegurarse de que los datos estén disponibles, sean accesibles, sean confiables y cumplan con los requisitos comerciales y tecnológicos de la organización.